铜基新材料江西省重点实验室;江西省科学院应用物理研究所;
近年来,智慧农业已经成为研究的一大热点。研究表明,基于深度学习的图像识别技术应用于智慧农业领域,具有重大的研究意义和发展前景。综述了图像识别技术在智慧农业领域的研究现状,并对图像识别技术中的传统技术和深度学习技术分别进行了总结。分析了深度学习技术在农作物成熟度检测、病虫害检测和障碍物检测方面的研究现状,指出了目前基于深度学习的图像识别技术在智慧农业领域所存在的问题。最后,展望了未来智慧农业的研究方向。
1,164 | 0 | 11 |
下载次数 | 被引频次 | 阅读次数 |
[1]许景辉,邵明烨,王一琛,等.基于迁移学习的卷积神经网络玉米病害图像识别[J].农业机械学报,2020,51(2):230-236,253.
[2] YU Y,VELASTIN S A,YIN F.Automatic grading of apples based on multi-features and weighted K-means clustering algorithm[J].Information Processing in Agriculture,2020,7(4):1-10.
[3]李冬睿,邱尚明,蓝新波,等.基于改进的Res Net在甘蔗病害识别中的研究[J].农业科技与信息,2023(8):27-30,38.
[4] YANG Q,DUAN S K,WANG L D.Efficient identification of apple leaf diseases in the wild using convolutional neural networks[J].Agronomy,2022,12(11):2784.
[5]周俊勇,陈永良,黄卫跃.最大类间方差法在果蔬种类识别中的应用研究[J].科技通报,2019,35(3):123-126.
[6]邵云,刘玘,李春喜,等.基于小波分析法的气象因子对河南省夏玉米单产的影响[J].河南师范大学学报(自然科学版),2023,51(6):108-116.
[7]杨锡震,陈俊英,张秋雨,等.基于小波特征和冬小麦生理参数的土壤水分高光谱模型优化[J].农业工程学报,2023,39(10):66-75.
[8]张萌,李光辉.基于RELIEF算法和极限学习机的苹果轻微损伤高光谱检测方法[J].浙江大学学报(农业与生命科学版),2019,45(1):126-134.
[9]王钎沣,夏国静,牛鑫鑫,等.基于改进的SIFT图像快速拼接方法[J].现代电子技术,2022,45(8):159-162.
[10]代国威,胡林,樊景超,等.基于GLCM特征提取和投票分类模型的马铃薯早、晚疫病检测[J].江苏农业科学,2023,51(8):185-192.
[11]王侨,孟志军,付卫强,等.基于机器视觉的玉米苗期多条作物行线检测算法[J].农业机械学报,2021,52(4):208-220.
[12]MONTALVO M,PAJARES G J M,GUERRERO J M,et al.Automatic detection of crop rows in maize fieldswith high weeds pressure[J].Expert Systems with Applications,2012,39(15):11889-11897.
[13]张彦斐,刘茗洋,宫金良,等.基于两级分割与区域标记梯度Hough圆变换的苹果识别[J].农业工程学报,2022,38(19):110-121.
[14]李霞,苏筠皓,岳振超,等.基于中值点Hough变换玉米行检测的导航线提取方法[J].农业工程学报,2022,38(5):167-174.
[15]PITTS W.A logical calculus of the ideas immanent in nervous activity[J].Bulletin of Mathematical Biology,1990,52(1):99-115.
[16]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[17]HINTON G E,OSINDERO S,TEH Y W.A fast learning alg orithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
[18]SILVER D,HUANG A,MADDISON C J,et al.Mastering the game of go with deep neural networks and tree search[J].Nature,2016,529(10):484-489.
[19]孙俊,谭文军,毛罕平,等.基于改进卷积神经网络的多种植物叶片病害识别[J].农业工程学报,2017,33(19):209-215.
[20]曾伟辉,李淼,李增,等.基于高阶残差和参数共享反馈卷积神经网络的农作物病害识别[J].电子学报,2019,47(9):1979-1986.
[21]王聃,柴秀娟.机器学习在植物病害识别研究中的应用[J].中国农机化学报,2019,40(9):171-180.
[22]邵明月,张建华,冯全,等.深度学习在植物叶部病害检测与识别的研究进展[J].智慧农业(中英文),2022,4(1):29-46.
[23]GANATRA N,PATEL A.A multiclass plant leaf disease detection using image processing and machine learning techniques[J].International Journal on Emerging Technologies,2020,11(2):1082-1086.
[24]RAMCHARAN A,BARANOWSKI K,MCCLOSKEY P,et al.Deep learning for image-based cassava disease detection[J].Frontiers in Plant Science,2017,23(10):1852.
[25]张瑞宇,刘顺淑.计算机视觉技术在果蔬采后处理中的应用[J].重庆工商大学学报(自然科学版),2004,21(5):497-501,506.
[26]刘志刚,王丽娟,喜冠南,等.水果成熟度检测技术的现状与发展[J].农业与技术,2020,40(8):17-21.
[27]盛晶晶.信息化技术在温室蔬菜种植中的应用分析[J].农业工程技术,2021,41(36):53-54.
[28]薛晓敏,韩雪平,王贵平,等.不同成熟度对李果实品质的影响[J].经济林研究,2020,38(3):26-36.
[29]高丽,龙勇,李红章,等.采收成熟度对晚熟大雅柑橘品质特性及其风味的影响[J].食品与发酵工业,2023,49(22):140-148.
[30]MAZEN F M A,NASHAT A A.Ripeness classification of bananas using an artificial neural network[J].Arabian Journal for Science and Engineering,2019,44(8):6901-6910.
[31]KHEIRALIPOUR K,NADIMI M,PALIWAL J.Development of an intelligent imaging system for ripeness determination of wild pistachios[J].Sensors,2022,22(19):7134.
[32]刘芳,刘玉坤,林森,等.基于改进型YOLO的复杂环境下番茄果实快速识别方法[J].农业机械学报,2020,51(6):229-237.
[33]王立舒,秦铭霞,雷洁雅,等.基于改进YOLOv4-Tiny的蓝莓成熟度识别方法[J].农业工程学报,2021,37(18):170-178.
[34]陈锋军,陈闯,朱学岩,等.基于改进YOLOv7的油茶果实成熟度检测[J].农业工程学报,2024,40(5):177-186.
[35]刘振M自然环境下番石榴的视觉识别及成熟度检测技术[D].广州:华南农业大学,2019.
[36]陈伟,张春雨,朱超冉.基于YOLOv5s算法的番茄成熟度识别研究[J].安徽科技学院学报,2023,37(1):92-95.
[37]熊俊涛,霍钊威,黄启寅,等.结合主动光源和改进YOLOv5s模型的夜间环境柑橘检测方法[J].华南农业大学学报,2024,45(1):97-107.
[38]卢筱伟,孟志青.融合注意力机制和多尺度卷积的小麦病害识别模型[J].中国农学通报,2023,39(25):147-154.
[39]马维娣,吴钦木.基于改进轻量化网络Mobile ViT的苹果树叶病害识别[J].江苏农业科学,2024,52(3):229-236.
[40]DECHANT C,WIESNER-HANKS T,CHEN S,et al.Automated identification of northem leaf blight-infected maize blants from field imagery using deep leaming[J].Phytopathology,2017,107(11):1426-1432.
[41]张建华,孔繁涛,吴建寨,等.基于改进VGG卷积神经网络的棉花病害识别模型[J].中国农业大学学报,2018,23(11):161-171.
[42]KHAN A I,QUADRI S,BANDAY S.Deep learning for apple diseases:Classification and identification[J].International Journal of Computational Intelligence Studies,2021,10(1):1-15.
[43]QIU J,LU X L,WANG X X,et al.Research on rice disease identification model basedon migration learning in VGG network[J].OP Conference Series:Earth and Environmental Science.IOP Publishing,2021,680(1):012087.
[44]OU S,PARK H,LEE J.Implementation of an obstacle recognition system for the blind[J].Applied Sciences,2019.10(1):282-290.
[45]杨昊霖,王其欢,李华彪,等.基于改进YOLOv5的田间复杂环境障碍物检测[J].中国农机化学报,2024,45(6):216-222,256.
[46]李文涛,张岩,莫锦秋,等.基于改进YOLOv3-tiny的田间行人与农机障碍物检测[J].农业机械学报,2020,51(S1):1-8,33.
[47]刘慧,张礼帅,沈跃,等.基于改进SSD的果园行人实时检测方法[J].农业机械学报,2019,50(4):29-35,101.
[48]魏建胜,潘树国,田光兆,等.农业车辆双目视觉障碍物感知系统设计与试验[J].农业工程学报,2021,37(9):55-63.
[49]刘茗洋.基于颜色与形状融合的苹果识别方法与试验[D].淄博:山东理工大学,2023.
[50]陈青,殷程凯,郭自良,等.基于改进YOLOv7的苹果生长状态及姿态识别[J].农业工程学报,2024,40(6):258-266.
[51]卫智熠.基于卷积神经网络的可见光图像农作物病虫害的检测[D].哈尔滨:哈尔滨工业大学,2017.
[52]余小东,杨孟辑,张海清,等.基于迁移学习的农作物病虫害检测方法研究与应用[J].农业机械学报,2020,51(10):252-258.
[53]李静,陈桂芬,安宇.基于优化卷积神经网络的玉米螟虫害图像识别[J].华南农业大学学报,2020,41(3):110-116.
[54]STEINBRENER J,POSCH K,LEITNER R.Hyperspectral fruit and vegetable classification using convolutional neural networks[J].Computers and Electronics in Agriculture,2019,162:364-372.
基本信息:
DOI:10.13990/j.issn1001-3679.2025.01.020
中图分类号:S126;TP18;TP391.41
引用信息:
[1]朱德明,程香平,邱伊健等.基于深度学习的农作物图像识别技术研究进展[J].江西科学,2025,43(01):154-161.DOI:10.13990/j.issn1001-3679.2025.01.020.
基金信息:
江西省03专项及5G项目(20232ABC03A18); 江西省科学院包干制项目(2023YSBG21016); 江西省科学院新兴交叉学科培育计划项目(2022YXXJC0102)